In this work, we study the problem of Embodied Referring Expression Grounding, where an agent needs to navigate in a previously unseen environment and localize a remote object described by a concise high-level natural language instruction. When facing such a situation, a human tends to imagine what the destination may look like and to explore the environment based on prior knowledge of the environmental layout, such as the fact that a bathroom is more likely to be found near a bedroom than a kitchen. We have designed an autonomous agent called Layout-aware Dreamer (LAD), including two novel modules, that is, the Layout Learner and the Goal Dreamer to mimic this cognitive decision process. The Layout Learner learns to infer the room category distribution of neighboring unexplored areas along the path for coarse layout estimation, which effectively introduces layout common sense of room-to-room transitions to our agent. To learn an effective exploration of the environment, the Goal Dreamer imagines the destination beforehand. Our agent achieves new state-of-the-art performance on the public leaderboard of the REVERIE dataset in challenging unseen test environments with improvement in navigation success (SR) by 4.02% and remote grounding success (RGS) by 3.43% compared to the previous state-of-the-art. The code is released at https://github.com/zehao-wang/LAD
translated by 谷歌翻译
在本文中,我们介绍了地图语言导航任务,代理在其中执行自然语言指令,并仅基于给定的3D语义图移至目标位置。为了解决任务,我们设计了指导感的路径建议和歧视模型(IPPD)。我们的方法利用MAP信息来提供指导感知的路径建议,即,它选择所有潜在的指令一致的候选路径以减少解决方案空间。接下来,为表示沿路径的地图观测值以获得更好的模态对准,提出了针对语义图定制的新型路径特征编码方案。基于注意力的语言驱动的歧视者旨在评估候选路径,并确定最佳路径作为最终结果。与单步贪婪决策方法相比,我们的方法自然可以避免误差积累。与单步仿制学习方法相比,IPPD在导航成功方面的性能增长超过17%,而在有挑战性的看不见的环境中,在路径匹配测量NDTW上的性能增长了0.18。
translated by 谷歌翻译
扩散是分子从较高浓度的区域的运动到较低浓度的区域。它可用于描述数据点之间的交互。在许多机器学习问题包括转导半监督学习和少量学习的问题,标记和未标记的数据点之间的关系是高分类精度的关键组件。在本文中,由对流扩散颂歌的启发,我们提出了一种新颖的扩散剩余网络(Diff-Reset),将扩散机制引入内部的神经网络中。在结构化数据假设下,证明扩散机构可以提高距离直径比,从而提高了阶级间点间的可分离性,并减少了局部分类点之间的距离。该特性可以通过用于构建可分离超平面的剩余网络来轻松采用。各种数据集中的半监控图节点分类和几次拍摄图像分类的广泛实验验证了所提出的扩散机制的有效性。
translated by 谷歌翻译
Objective: We aim to develop an open-source natural language processing (NLP) package, SODA (i.e., SOcial DeterminAnts), with pre-trained transformer models to extract social determinants of health (SDoH) for cancer patients, examine the generalizability of SODA to a new disease domain (i.e., opioid use), and evaluate the extraction rate of SDoH using cancer populations. Methods: We identified SDoH categories and attributes and developed an SDoH corpus using clinical notes from a general cancer cohort. We compared four transformer-based NLP models to extract SDoH, examined the generalizability of NLP models to a cohort of patients prescribed with opioids, and explored customization strategies to improve performance. We applied the best NLP model to extract 19 categories of SDoH from the breast (n=7,971), lung (n=11,804), and colorectal cancer (n=6,240) cohorts. Results and Conclusion: We developed a corpus of 629 cancer patients notes with annotations of 13,193 SDoH concepts/attributes from 19 categories of SDoH. The Bidirectional Encoder Representations from Transformers (BERT) model achieved the best strict/lenient F1 scores of 0.9216 and 0.9441 for SDoH concept extraction, 0.9617 and 0.9626 for linking attributes to SDoH concepts. Fine-tuning the NLP models using new annotations from opioid use patients improved the strict/lenient F1 scores from 0.8172/0.8502 to 0.8312/0.8679. The extraction rates among 19 categories of SDoH varied greatly, where 10 SDoH could be extracted from >70% of cancer patients, but 9 SDoH had a low extraction rate (<70% of cancer patients). The SODA package with pre-trained transformer models is publicly available at https://github.com/uf-hobiinformatics-lab/SDoH_SODA.
translated by 谷歌翻译
Jacobian and Hessian regularization aim to reduce the magnitude of the first and second-order partial derivatives with respect to neural network inputs, and they are predominantly used to ensure the adversarial robustness of image classifiers. In this work, we generalize previous efforts by extending the target matrix from zero to any matrix that admits efficient matrix-vector products. The proposed paradigm allows us to construct novel regularization terms that enforce symmetry or diagonality on square Jacobian and Hessian matrices. On the other hand, the major challenge for Jacobian and Hessian regularization has been high computational complexity. We introduce Lanczos-based spectral norm minimization to tackle this difficulty. This technique uses a parallelized implementation of the Lanczos algorithm and is capable of effective and stable regularization of large Jacobian and Hessian matrices. Theoretical justifications and empirical evidence are provided for the proposed paradigm and technique. We carry out exploratory experiments to validate the effectiveness of our novel regularization terms. We also conduct comparative experiments to evaluate Lanczos-based spectral norm minimization against prior methods. Results show that the proposed methodologies are advantageous for a wide range of tasks.
translated by 谷歌翻译
协同的药物组合为增强治疗功效和减少不良反应提供了巨大的潜力。然而,由于未知的因果疾病信号通路,有效和协同的药物组合预测仍然是一个悬而未决的问题。尽管已经提出了各种深度学习(AI)模型来定量预测药物组合的协同作用。现有深度学习方法的主要局限性是它们本质上是不可解释的,这使得AI模型的结论是对人类专家的非透明度的结论,因此限制了模型结论的鲁棒性和这些模型在现实世界中的实施能力人类医疗保健。在本文中,我们开发了一个可解释的图神经网络(GNN),该神经网络(GNN)揭示了通过挖掘非常重要的亚分子网络来揭示协同(MOS)的基本基本治疗靶标和机制。可解释的GNN预测模型的关键点是一个新颖的图池层,基于自我注意的节点和边缘池(此后为SANEPOOL),可以根据节点特征和图表计算节点和边缘的注意力评分(重要性)拓扑。因此,提出的GNN模型提供了一种系统的方法来预测和解释基于检测到的关键亚分子网络的药物组合协同作用。我们评估了来自NCI Almanac药物组合筛查数据的46个核心癌症信号通路和药物组合的基因制造的分子网络。实验结果表明,1)Sanepool可以在其他流行的图神经网络中实现当前的最新性能; 2)由SANEPOOOL检测到的亚分子网络是可自我解释的,并且可以鉴定协同的药物组合。
translated by 谷歌翻译
做出强大的预测是一个重要的挑战。联邦学习(FL)中的一个单独挑战是减少交流回合的数量,尤其是因为这样做会降低异质数据设置的性能。为了解决这两个问题,我们对学习全球模型的问题有贝叶斯的看法。我们展示了如何使用客户预测性后代近似全局预测后验。这与其他作品不同,该作品将局部模型空间后代汇总到全局模型空间后部,并且由于后部的高维多模式性质而易受高近似误差的影响。相比之下,我们的方法对预测后期进行了聚集,由于输出空间的低维度,通常更容易近似。我们基于此想法提出了一种算法,该算法在每个客户端对MCMC采样进行了进行估计,然后在一轮中汇总它们以获得全局合奏模型。通过对多个分类和回归任务的经验评估,我们表明,尽管使用了一轮通信,但该方法与其他FL技术具有竞争力,并且在异质环境上的表现优于它们。该代码可在https://github.com/hasanmohsin/fedpredspace_1 round上公开获得。
translated by 谷歌翻译
Optimization of directed acyclic graph (DAG) structures has many applications, such as neural architecture search (NAS) and probabilistic graphical model learning. Encoding DAGs into real vectors is a dominant component in most neural-network-based DAG optimization frameworks. Currently, most DAG encoders use an asynchronous message passing scheme which sequentially processes nodes according to the dependency between nodes in a DAG. That is, a node must not be processed until all its predecessors are processed. As a result, they are inherently not parallelizable. In this work, we propose a Parallelizable Attention-based Computation structure Encoder (PACE) that processes nodes simultaneously and encodes DAGs in parallel. We demonstrate the superiority of PACE through encoder-dependent optimization subroutines that search the optimal DAG structure based on the learned DAG embeddings. Experiments show that PACE not only improves the effectiveness over previous sequential DAG encoders with a significantly boosted training and inference speed, but also generates smooth latent (DAG encoding) spaces that are beneficial to downstream optimization subroutines. Our source code is available at \url{https://github.com/zehao-dong/PACE}
translated by 谷歌翻译
我们提出了基于零件的复发多视距聚集网络(PREMA),以消除实际视图缺陷的不利影响,例如观点,闭塞或背景腔,以及增强形状表示的辨别能力。灵感来自人类主要通过其判别部分识别对象的事实,我们定义了多视图相干部分(MCP),判别部分在不同视图中再次进行。我们的Prema可以可靠地定位并有效地利用MCP来构建强大的形状表示。全面地,我们在Prema中设计一个新的区域关注单元(RAU),以计算每个视图的置信度图,并通过应用这些映射来查看特征来提取MCP。Prema通过关联不同视图的功能来突出MCP,并汇总为形状表示的零件感知功能。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译